(3x^2+2xy+y^3)dx+(x^2+y^2)dy=0

Simple and best practice solution for (3x^2+2xy+y^3)dx+(x^2+y^2)dy=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (3x^2+2xy+y^3)dx+(x^2+y^2)dy=0 equation:


Simplifying
(3x2 + 2xy + y3) * dx + (x2 + y2) * dy = 0

Reorder the terms:
(2xy + 3x2 + y3) * dx + (x2 + y2) * dy = 0

Reorder the terms for easier multiplication:
dx(2xy + 3x2 + y3) + (x2 + y2) * dy = 0
(2xy * dx + 3x2 * dx + y3 * dx) + (x2 + y2) * dy = 0

Reorder the terms:
(dxy3 + 2dx2y + 3dx3) + (x2 + y2) * dy = 0
(dxy3 + 2dx2y + 3dx3) + (x2 + y2) * dy = 0

Reorder the terms for easier multiplication:
dxy3 + 2dx2y + 3dx3 + dy(x2 + y2) = 0
dxy3 + 2dx2y + 3dx3 + (x2 * dy + y2 * dy) = 0
dxy3 + 2dx2y + 3dx3 + (dx2y + dy3) = 0

Reorder the terms:
dxy3 + 2dx2y + dx2y + 3dx3 + dy3 = 0

Combine like terms: 2dx2y + dx2y = 3dx2y
dxy3 + 3dx2y + 3dx3 + dy3 = 0

Solving
dxy3 + 3dx2y + 3dx3 + dy3 = 0

Solving for variable 'd'.

Move all terms containing d to the left, all other terms to the right.

Factor out the Greatest Common Factor (GCF), 'd'.
d(xy3 + 3x2y + 3x3 + y3) = 0

Subproblem 1

Set the factor 'd' equal to zero and attempt to solve: Simplifying d = 0 Solving d = 0 Move all terms containing d to the left, all other terms to the right. Simplifying d = 0

Subproblem 2

Set the factor '(xy3 + 3x2y + 3x3 + y3)' equal to zero and attempt to solve: Simplifying xy3 + 3x2y + 3x3 + y3 = 0 Solving xy3 + 3x2y + 3x3 + y3 = 0 Move all terms containing d to the left, all other terms to the right. Add '-1xy3' to each side of the equation. xy3 + 3x2y + 3x3 + -1xy3 + y3 = 0 + -1xy3 Reorder the terms: xy3 + -1xy3 + 3x2y + 3x3 + y3 = 0 + -1xy3 Combine like terms: xy3 + -1xy3 = 0 0 + 3x2y + 3x3 + y3 = 0 + -1xy3 3x2y + 3x3 + y3 = 0 + -1xy3 Remove the zero: 3x2y + 3x3 + y3 = -1xy3 Add '-3x2y' to each side of the equation. 3x2y + 3x3 + -3x2y + y3 = -1xy3 + -3x2y Reorder the terms: 3x2y + -3x2y + 3x3 + y3 = -1xy3 + -3x2y Combine like terms: 3x2y + -3x2y = 0 0 + 3x3 + y3 = -1xy3 + -3x2y 3x3 + y3 = -1xy3 + -3x2y Add '-3x3' to each side of the equation. 3x3 + -3x3 + y3 = -1xy3 + -3x2y + -3x3 Combine like terms: 3x3 + -3x3 = 0 0 + y3 = -1xy3 + -3x2y + -3x3 y3 = -1xy3 + -3x2y + -3x3 Add '-1y3' to each side of the equation. y3 + -1y3 = -1xy3 + -3x2y + -3x3 + -1y3 Combine like terms: y3 + -1y3 = 0 0 = -1xy3 + -3x2y + -3x3 + -1y3 Simplifying 0 = -1xy3 + -3x2y + -3x3 + -1y3 The solution to this equation could not be determined. This subproblem is being ignored because a solution could not be determined.

Solution

d = {0}

See similar equations:

| 5-3x=4x+7 | | 10/10.000=m | | (2w^2-10w-28)/(w^2-3w-28) | | y^2-10=71 | | q^2-86=-31 | | g^2-29=7 | | 10/10.000= | | 01/10.000=? | | j^2-77=-61 | | j^2-77=61 | | (7ab)(14ab)= | | 2.8+3.2x+1=16.7 | | f^2+47=63 | | 14ab-7ab= | | -7-8=6x+8-5x | | 5j^2-26j+5=0 | | 6-3x=-4+2x | | 9(cd+5)= | | 2q^2+21q+10=0 | | 7+2x=25-4x | | (5x+2)-(-4x+7)= | | 4w-12w=24 | | 4k^2+25k+6=0 | | 9-2x=21-5x | | (5cd)(9cd)= | | 9k^2+14k+5=0 | | 4v+13=23 | | 3n^2-47n=0 | | 8x(4x+5)=1000 | | 2d^2+7d-9=0 | | ln(2x-1)+2lnx=lnx | | 4t^3+t+4(t-6t^3)= |

Equations solver categories